what can cord blood treat | is cord blood banking worth the cost

The umbilical cord is a rich source of two main types of stem cells: cord blood stem cells and cord tissue stem cells. Through the science of cord blood and cord tissue banking, these stem cells can help nurture life, long after your baby’s birth.
Cord blood is currently approved by the FDA for the treatment for nearly 80 diseases, and cord blood treatments have been performed more than 35,000 times around the globe to treat cancers (including lymphoma and leukemia), anemias, inherited metabolic disorders and some solid tumors and orthopedic repair. Researchers are also exploring how cord blood has the ability to cross the blood–brain barrier and differentiate into neurons and other brain cells, which may be instrumental in treating conditions that have been untreatable up to this point. The most exciting of these are autism, cerebral palsy and Alzheimer’s.
^ a b c American Academy of Pediatrics Section on Hematology/Oncology; American Academy of Pediatrics Section on Allergy/Immunology; Lubin, BH; Shearer, WT (January 2007). “Cord blood banking for potential future transplantation”. Pediatrics. 119 (1): 165–70. doi:10.1542/peds.2006-2901. PMID 17200285.
Contact Us | Viewers & Players | Privacy Policy | Disclaimers | Accessibility | Freedom of Information Act | No Fear Act | U.S. Department of Health and Human Services | USA.gov | WhiteHouse.gov | Healthcare.gov
One oft cited argument against cord blood banking is that it is not known how long these cells can remain viable in storage.  While it is not known if cells taken from an individual as an infant will be beneficial to them as an adult, units stored for up to 10 years have been transplanted successfully. This indicates that there is no reason to suggest serious deterioration in the quality of cord blood units stored for longer periods of time.
The stem cells from your baby’s cord blood may also be effective in treating certain diseases or conditions of a parent or sibling. Cord blood stem cells have similar ability to treat disease as bone marrow but with significantly less rejection.
The American Pediatric Association in 2008 recommended that physicians recommend that cord blood be donated instead of saved privately for family families. One of the major proponents for this was Joanne Kurtzberg, who profited from this by getting funding for her public cord blood bank at Duke University. She has since started her own private cord blood bank after doing more research on Cerebral Palsy. Interesting.
Your baby’s newborn stem cells are transported to our banking facilities by our medical courier partner, and you can receive tracking updates. Each sample is processed and stored with great care at our laboratory in Tucson, Arizona. CBR’s Quality Standard means we test every cord blood sample for specific quality metrics.
The cord blood collection process is simple, safe, and painless. The process usually takes no longer than five minutes. Cord blood collection does not interfere with delivery and is possible with both vaginal and cesarean deliveries.
Cancellations prior to CBR’s storage of the samples(s) are subject to an administrative fee of $150. If you terminate your agreement with CBR after storage of the sample(s), you will not receive a refund.
So what are your options? You have three choices. One is to store the cord blood with a private company at a cost to you ranging from $1,500 to $2,500 and an annual storage fee in the ballpark of $125. Secondly, you can donate the cord blood to a public bank, if there is one working with your hospital, and your doctor is on board with the idea. There are also public banks that accept mail-in donations, if you register during your second trimester and your doctor is willing to take a short training class on-line. Zero cost to you. The third option is to do nothing and have the cord blood, umbilical cord, and placenta destroyed as medical waste.
Complicating matters further, each public bank has its own registry, so transplant centers must search many different databases to find a match for a patient. Currently, a Caucasian patient has an 88 percent chance of finding a cord-blood match through a public-bank registry, and minorities have a 58 percent chance. (Collection hospitals tend to be in areas with higher rates of Caucasian births, and parents from certain ethnic groups are wary of donating for religious or cultural reasons.)
Brigham and Women’s Hospital and Dana-Farber Cancer Institute jointly oversee the Cord Blood Donation Program to provide hope to all patients in need of a life-saving stem cell transplant. For more information about the stem cell transplant program please visit The Stem Cell/Bone Marrow Transplant Program at Dana-Farber/Brigham and Women’s Cancer Center (DF/BWCC) web site.
When you consider that public banks can only expect to ship 1-2% of their inventory for transplant, you can quickly understand why most public banks are struggling to make ends meet. That struggle means that fewer collection programs are staffed, and there are fewer opportunities for parents to donate to the public good. We said earlier that public banks only keep cord blood donations over a minimum of 900 million cells, but today most public banks have raised that threshold to 1.5 billion cells. The reason is that the largest units are the ones most likely to be used for transplants that bring income to the bank. Family cord blood banks do not need to impose volume thresholds because they have a profit margin on every unit banked.
There are some diseases on the list (like neuroblastoma cancer) where a child could use his or her own cord blood. However, most of the diseases on the proven treatment list are inherited genetic diseases. Typically, a child with a genetic disease would require a cord blood unit from a sibling or an unrelated donor. 
There are usually two fees involved in cord blood banking. The first is the initial fee that covers enrollment, collection, and storage for at least the first year. The second is an annual storage fee. Some facilities vary the initial fee based upon the length of a predetermined period of storage.
We believe that every family should have the opportunity to preserve their baby’s newborn stem cells. That’s why CBR offers transparent costs of cord blood banking, and various payment options to fit this important step into almost every family budget.
Throughout pregnancy your baby’s umbilical nurtures life.  It carries oxygen-rich cells and nutrients from your placenta to your baby and then allows your baby to pump deoxygenated and nutrient-depleted blood back to your placenta. This constant exchange is protected by a special type of tissue that acts like a cushion, preventing twisting and compression to ensure that the cord blood flow remains steady and constant. 
We offer standard and premium cord blood processing options. Our standard service has been used in thousands of successful transplants since 1988 and begins at $1600. For $350 more, our premium service uses a superior new processing method that greatly enhances parents’ return on investment. (Please visit our processing technology page to learn about our cord blood processing methods.) For an additional $950, you can also store your baby’s cord tissue, which has the potential to help heal the body in different ways than cord blood.
In the public arena there has been much discussion on the benefits of for-profit private cord blood banking over public banking.  Numerous for-profit companies offer new parents the option of collecting and storing cord blood for future use by the donor infant, siblings, or other family members.  Parents may choose to bank cord blood if they have a family history of a particular disease or disorder, or as a means of “biological insurance” in case their child or family member develops a medical condition or becomes injured requiring a transplant.
Cord blood (short for umbilical cord blood) is the blood that remains in the umbilical cord and placenta post-delivery. At or near term, there is a maternal–fetal transfer of cells to boost the immune systems of both the mother and baby in preparation for labor. This makes cord blood at the time of delivery a rich source of stem cells and other cells of the immune system. Cord blood banking is the process of collecting the cord blood and extracting and cryogenically freezing its stem cells and other cells of the immune system for potential future medical use.
^ Roura S, Pujal JM, Gálvez-Montón C, Bayes-Genis A (2015). “Impact of umbilical cord blood-derived mesenchymal stem cells on cardiovascular research”. BioMed Research International. 2015: 975302. doi:10.1155/2015/975302. PMC 4377460 . PMID 25861654.
http://www.stormtracker12.com/story/38663417/news
http://www.wmcactionnews5.com/story/38663417/cord-blood-banking-stem-cell-research-pros-cons-review-launched

http://www.hawaiinewsnow.com/story/38663417/cord-blood-banking-stem-cell-research-pros-cons-review-launched

http://www.wandtv.com/story/38663417/cord-blood-banking-stem-cell-research-pros-cons-review-launched

http://www.nbc12.com/story/38663417/cord-blood-banking-stem-cell-research-pros-cons-review-launched

https://www.youtube.com/channel/UCspc5xs7rmywaELYKBqCOAg
Generally speaking, public cord blood banks collect, process and store your donated cord blood for free. The cord blood you donate to a public bank may be used for transplants or for research purposes, so you may not be able to access your own cord blood. View a list of public cord blood banks in North America.
After the birth of a baby, the umbilical cord and placenta are typically discarded as medical waste, but if requested, stem cells from the cord blood inside of them can be collected for storage or donation. Stem cells can be used to treat a variety of diseases. Learn what these diseases are in our comprehensive list of diseases treatable with cord blood stem cells.
In addition to the benefits related to transplanting HSCs derived from cord blood, HSCs are relatively easy to isolate, giving them an advantage over other adult stem cell types.  Cord blood HSCs are also believed to have greater plasticity than HSCs found in bone marrow or the blood stream.  The limits and possibilities of using HSCs to repair tissues and treat non-blood related disorders are currently being studied.

Leave a Reply

Your email address will not be published. Required fields are marked *