cord blood and placenta banking | banking cord blood video

“This is a medical service that has to be done when your baby’s cells arrive and you certainly want them to be handled by good equipment and good technicians,” says Frances Verter, Ph.D., founder and director of Parent’s Guide to Cord Blood Foundation, a nonprofit dedicated to educating parents about cord blood donation and cord blood therapists. “It’s just not going to be cheap.” Although the American Academy of Pediatrics (AAP) states cord blood has been used to treat certain diseases successfully, there isn’t strong evidence to support cord blood banking. If a family does choose to bank cord blood, the AAP recommends public cord blood banking (instead of private) to reduce costs.
While banking cord blood is a new experience for many parents, it is a simple one. After all, most mothers are worried about how the delivery will go and don’t want to also be worried about the details of collecting, processing and cryo-preserving their babies’s cord blood. Thankfully, the healthcare provider and the cord blood bank do most of the work. Here are the steps found in cord blood banking:
The Stem Cell Therapeutic and Research Act was passed in 2005, which supports building a public reserve of 150,000 cord blood units from ethnically diverse donors in order to treat more than 90% of patients in need of HSC transplants.  Donors from ethnic minority patients are particularly in need due to the greater variation of HLA-types in non-Caucasian ethnicities. Thirty-five percent of cord blood units go to patients of diverse ethnic and racial backgrounds.
If you feel that the procedure is too expensive for your child, check with the hospital to see if there are any programs and/or grants available that can assist with the procedure.  Some companies do offer financial aid.
The first successful cord blood transplant (CBT) was done in 1988 in a child with Fanconi anemia.[1] Early efforts to use CBT in adults led to mortality rates of about 50%, due somewhat to the procedure being done in very sick people, but perhaps also due to slow development of immune cells from the transplant.[1] By 2013, 30,000 CBT procedures had been performed and banks held about 600,000 units of cord blood.[2]
Florida Hospital for Children is conducting an FDA-regulated phase I clinical trial to investigate the use of a child’s stem cells derived from their own cord blood as a treatment for acquired sensorineural hearing loss.
This is only the beginning. Newborn stem cell research is advancing, and may yield discoveries that could have important benefits for families. CBR’s mission is to support the advancement of newborn stem cell research, with the hope that the investment you are making now will be valuable to your family in the future. CBR offers a high quality newborn stem cell preservation system to protect these precious resources for future possible benefits for your family.
If you are interested in donating cord blood to a public bank and do not have access to a hospital that accepts cord blood donations, you can contact a lab that offers a mail-in program. After you’ve passed the lab’s eligibility screening process, they’ll send you a kit that you can use to package and mail in your cord blood.2
As cord blood is inter-related to cord blood banking, it is often a catch-all term used for the various cells that are stored. It may be surprising for some parents to learn that stored cord blood contains little of what people think of as “blood,” as the red blood cells (RBCs) can actually be detrimental to a cord blood treatment. (As we’ll discuss later, one of the chief goals of cord blood processing is to greatly reduce the volume of red blood cells in any cord blood collection.)
^ a b c American Academy of Pediatrics Section on Hematology/Oncology; American Academy of Pediatrics Section on Allergy/Immunology; Lubin, BH; Shearer, WT (January 2007). “Cord blood banking for potential future transplantation”. Pediatrics. 119 (1): 165–70. doi:10.1542/peds.2006-2901. PMID 17200285.
Cord blood is used the same way that hematopoietic stem cell transplantation is used to reconstitute bone marrow following radiation treatment for various blood cancers, and for various forms of anemia.[1][2] Its efficacy is similar as well.[1]
Current applications for newborn stem cells include treatments for certain cancers and blood, metabolic and immune disorders. Additionally, newborn stem cell preservation has a great potential to benefit the newborn’s immediate family members with stem cell samples preserved in their most pristine state.
For example, in the UK the NHS Cord Blood Bank has been collecting and banking altruistically donated umbilical cord blood since 1996. The cord blood in public banks like this is stored indefinitely for possible transplant, and is available for any patient that needs this special tissue type. There is no charge to the donor but the blood is not stored specifically for that person or their family.
Currently, ViaCord has released the most cord blood units for medical transplant and has the highest cord blood transplant survival rate among companies who have disclosed complete transplant data. The one-year survival rate of patients who were treated with ViaCord cord blood units is 88%, and the long-term patient survival rate is 82%.1
In the public arena there has been much discussion on the benefits of for-profit private cord blood banking over public banking.  Numerous for-profit companies offer new parents the option of collecting and storing cord blood for future use by the donor infant, siblings, or other family members.  Parents may choose to bank cord blood if they have a family history of a particular disease or disorder, or as a means of “biological insurance” in case their child or family member develops a medical condition or becomes injured requiring a transplant.
Luckily for expectant parents, cord blood can be easily collected at the baby’s birth via the umbilical cord with no harm to the mother or baby. This is why pregnancy is a great time to plan to collect and bank a baby’s cord blood.
The cord blood collection process is simple, safe, and painless. The process usually takes no longer than five minutes. Cord blood collection does not interfere with delivery and is possible with both vaginal and cesarean deliveries.
Most stored cord blood is discarded. At public cord blood banks, a unit of stored cord blood has a greater chance of being used to help a sick child or used toward stem cell research. Private cord blood banks, on the other hand, eventually throw away blood that a family no longer wants to store or use.
The stored blood can’t always be used, even if the person develops a disease later on, because if the disease was caused by a genetic mutation, it would also be in the stem cells. Current research says the stored blood may only be useful for 15 years.
In March 2004, the European Union Group on Ethics (EGE) has issued Opinion No.19[16] titled Ethical Aspects of Umbilical Cord Blood Banking. The EGE concluded that “[t]he legitimacy of commercial cord blood banks for autologous use should be questioned as they sell a service, which has presently, no real use regarding therapeutic options. Thus they promise more than they can deliver. The activities of such banks raise serious ethical criticisms.”[16]
In Europe, Canada, and Australia use of cord blood is regulated as well.[5] In the United Kingdom the NHS Cord Blood Bank was set up in 1996 to collect, process, store and supply cord blood; it is a public cord blood bank and part of the NHS.[7]
Cord blood banking is not always cheap. It’s completely free to donate blood to a public cord blood bank, but private banks charge $1,400 to $2,300 for collecting, testing, and registering, plus an annual $95 to $125 storing fee.
There are so many things to think about when you have a child. One of them is the blood from your baby’s umbilical cord (which connects the baby to the mother while in the womb). It used to be thrown away at birth, but now, many parents store the blood for the future health of their child. Should you do it?
Banking of stem cells from cord blood began in 1994 with the foundation of the New York Blood Centre Cord Blood Bank. The field of umbilical cord blood storage has matured considerably over the last two decades. We continue to learn more about the long-term effects of cryo-preservation on the cells, which has resulted in increased storage times.
Excitement about cord tissue’s potential to help conditions affecting cartilage, muscle and nerve cells continues to grow.19 Researchers are focusing on a wide range of potential treatment areas, including Parkinson’s disease, Alzheimer’s, liver fibrosis, lung cancer, and sports injuries. Since 2007 there have been 150 clinical trials using cord tissue stem cells.
Estimated first minimum monthly payment. Future minimum payments will vary based on amount and timing of payments, interest rate, and other charges added to account. You may always pay more. The more you pay each month, the quicker your balance will be repaid and the lower your total finance charges will be. For more information about CareCredit’s healthcare payment plans, please visit carecredit.com. If minimum monthly payments are 60 days past due, the promotions may be terminated and a Penalty APR may apply. Standard terms including Purchase APR or Penalty APR up to 29.99% apply to expired and terminated promotions, and optional charges. Subject to credit approval by Synchrony Bank. Other terms and conditions may apply. Please see here for more details.
They aren’t the only ones questioning the business practices of private cord-blood banks. Both the American College of Obstetricians and Gynecologists (ACOG) and the American Academy of Pediatrics (AAP) issued statements in the late 1990s opposing the use of for-profit banks — and criticizing their marketing tactics. Instead, they recommended that parents donate cord blood to public banks, which make it available for free to anyone who needs it. Globally, other organizations have done the same. Italy and France have banned private cord-blood banking altogether.
http://thebuzzreporters.com/news/cord-blood-banking-stem-cell-research-pros-amp-cons-review-launched/0084102/
http://www.wmcactionnews5.com/story/38663417/cord-blood-banking-stem-cell-research-pros-cons-review-launched

http://www.hawaiinewsnow.com/story/38663417/cord-blood-banking-stem-cell-research-pros-cons-review-launched

http://www.wandtv.com/story/38663417/cord-blood-banking-stem-cell-research-pros-cons-review-launched

http://www.nbc12.com/story/38663417/cord-blood-banking-stem-cell-research-pros-cons-review-launched

https://www.youtube.com/channel/UCspc5xs7rmywaELYKBqCOAg
Blood from the umbilical cord and placenta is put into a sterile bag. (The blood is put into the bag either before or after the placenta is delivered, depending upon the procedure of the cord blood bank.)
Companies throughout Europe also offer commercial (private) banking of umbilical cord blood. A baby’s cord blood is stored in case they or a family member develop a condition that could be treated by a cord blood transplant. Typically, companies charge an upfront collection fee plus an annual storage fee.
After all is said and done, the cost to collect, test, process and store a donated cord blood collection at a public bank is estimated to be $1,200 to $1,500 dollars for each unit banked. That does not include the expense for the regulatory and quality systems needed to maintain licensure, or the cost of collecting units that are discarded because they don’t meet standards.
While many diseases can be treated with a cord blood transplant, most require stem cells from another donor (allogeneic).  Cord blood cells taken from the patient (autologous) typically contain the same defect or precancerous cells that caused the patient to need the transplant in the first place.  Most medical professionals believe the chance that cord blood banking will be utilized by the patient or a close relative is relatively low.  Estimates range from 1 out of 1,000 to 1 out of 200,000.[2]  From these estimates, privately stored cord blood is not likely to be utilized by the average family. The American Academy of Pediatrics has discouraged cord blood banking for self-use, since most diseases requiring stem cell transplants are already present in the cord blood stem cells.[3] Additionally, a recent study published in Pediatrics indicates that few transplants have been performed using privately stored cord blood.  From the responses of 93 transplant physicians, in only 50 cases was privately banked blood used.  In 9 of these cases the cord blood was transplanted back into the donor patient (autologous transplant).[4]  One of the main selling points of private cord blood banks is the possibility of a future  autologous transplant. 
Today, cord blood stem cells have been used in more than 35,000 transplants worldwide to regenerate healthy blood and immune systems, like in a bone marrow transplant. 1* Find out which conditions have been treated here.
Lack of awareness is the #1 reason why cord blood is most often thrown away. For most pregnant mothers, their doctor does not even mention the topic. If a parent wants to save cord blood, they must be pro-active. ​
For these and other reasons, the American Academy of Pediatrics (AAP) and many physicians do not recommend private cord blood banking except as “directed donations” in cases where a family member already has a current need or a very high potential risk of needing a bone marrow transplant. In all other cases, the AAP has declared the use of cord blood as “biological insurance” to be “unwise.” [Read the AAP’s news release at http://www.aap.org/advocacy/archives/julcord.htm ]
Cord blood stem cells are classified as adult (or non-embryonic) stem cells.  Embryonic stem cells (ESC) are believed to be more advantageous for the  treatment of disease or injury due to their pluripotent nature; that is, they have the ability to differentiate into all the cells present in the human body derived from the three germ layers (endoderm, mesoderm, and ectoderm).  Adult stem cells are multipotent, implying  that they can only differentiate into a limited number of cells typically within the same “family” (e.g., hematopoietic stem cells give rise to red blood cells, white blood cells, and platelets). 

Leave a Reply

Your email address will not be published. Required fields are marked *