cord blood comparison | ratings of cord blood banks

Cord blood holds promise for future medical procedures. Scientists are still studying more ways to treat more diseases with cord blood. At Duke University, for example, researchers are using patients’ own cord blood in trials for cerebral palsy and Hypoxic ischemic encephalopathy (a condition in which the brain does not receive enough oxygen). Trials are also under way for the treatment of autism at the Sutter Neuroscience Institute in Sacramento, California.
Here are 5 Things You Need to Know About Cord Blood Before You Deliver Your Baby according to @TodaysMama #cordblood #cordbloodbanking #cordbloodregistry #newborn #stemcell todaysmama.com/2017/12/5-thin… via @todaysmama
Exciting news reported by US News & World Report: Results from a cerebral palsy clinical trial at Duke University have been published. Read all the details on our blog now! bit.ly/2AsXSY4 pic.twitter.com/e6vxcXxTuO
While the transplantation of cord blood has its advantages, its main disadvantage is the limited amount of blood contained within a single umbilical cord.  Because of this, cord blood is most often transplanted in children.  Physicians are currently trying to determine ways that cord blood can be used in larger patients, such as transferring two cord blood units or increasing the number of cells in vitro before transplanting to the patient.  It also takes longer for cord blood cells to engraft. This lengthier period means that the patient is at a higher risk for infection until the transplanted cells engraft.  Patients also cannot get additional donations from the same donor if the cells do not engraft or if the patient relapses.  If this is the case, an additional cord blood unit or an adult donor may be used.  While cord blood is screened for a variety of common genetic diseases, rare genetic diseases that manifest after birth may be passed on.  The National Cord Blood Program estimates that the risk of transmitting a rare genetic disorder is approximately 1 in 10,000.
#AutismAwarenessMonth Watch as Dr. Michael Chez discusses results of a recently published trial studying #cordblood as a potential treatment for autism and learn how CBR clients are helping to advance newborn stem cell science! pic.twitter.com/nOwBJGpy6A
Private storage of one’s own cord blood is unlawful in Italy and France, and it is also discouraged in some other European countries. The American Medical Association states “Private banking should be considered in the unusual circumstance when there exists a family predisposition to a condition in which umbilical cord stem cells are therapeutically indicated. However, because of its cost, limited likelihood of use, and inaccessibility to others, private banking should not be recommended to low-risk families.”[11] The American Society for Blood and Marrow Transplantation and the American Congress of Obstetricians and Gynecologists also encourage public cord banking and discourage private cord blood banking. Nearly all cord blood transplantations come from public banks, rather than private banks,[9][12] partly because most treatable conditions can’t use a person’s own cord blood.[8][13] The World Marrow Donor Association and European Group on Ethics in Science and New Technologies states “The possibility of using one’s own cord blood stem cells for regenerative medicine is currently purely hypothetical….It is therefore highly hypothetical that cord blood cells kept for autologous use will be of any value in the future” and “the legitimacy of commercial cord blood banks for autologous use should be questioned as they sell a service which has presently no real use regarding therapeutic options.”[14]
Public cord blood banking supports the health of the community. Public banks collect qualifying cord blood donations from healthy pregnancies and save them in case one of them will be the match to save the life of a patient who needs a stem cell transplant. In the United States our registry of donors is called Be The Match. Patients who have a rare genetic type are more likely to receive cord blood transplants. In order for parents to donate cord blood to a public bank, their baby must be born at a hospital that accepts donations. Public cord blood banking is highly recommended by both the American Academy of Pediatrics (AAP) and American Medical Association (AMA).
Chloe Savannah Metz’ mother donated her baby girl’s cord blood to the NCBP in December 2000. “Many thanks to the New York Blood Center for giving us the opportunity to donate our cord — we hope to give someone a second chance!” – Christine Metz
The Cord Blood Bank of Arkansas launched operations in 2011, providing both public donation and family banking services. They accept donations from ANY HOSPITAL IN THE STATE OF ARKANSAS.  They also accept donations from bordering states so long as the donor is an Arkansas resident.
Stem Cell Storage is not included in their price. Viacord and Cord Blood Registry both charge for annual storage. This means that when you pay for your initial cord blood and/or cord tissue storage you will also have to pay annually for storage.
The process is safe, painless, easy and FREE. Your physician or midwife collects the cord blood after your baby has delivered, so it does not interfere with the birthing process. The collection will not take place if there is an concern for your safety or that of your baby.
Up to 180 mL of blood can be taken from an umbilical cord for use in stem cell transplants.  Due to the experimental nature of cord blood transplants, such transplants are considered on a case-by-case basis.  This blood is collected from the umbilical cord, processed,[1] and cryogenically preserved shortly after the umbilical cord is clamped. This blood can be cryogenically preserved for public or private (family) use.  Public registries store cord blood donated for availability to the general public for transplantation.  Private registries store cord blood on behalf of families who wish to use this blood for the donor infant, siblings, or other family members.  Private cord blood banks charge a collection fee (ranging from $1,000-2,000) and an annual storage fee (approximately $150 per year).
Use for Family Siblings gain access to the stem cells, too. They have a one-in-four chance of being a perfect match amd a 39% chance of being a transplant-acceptable match. Parents have a 100 pecent chance of being a partial match. The chances of recovering the donated stem cells for a family memeber is also diminished greatly as described above. Siblings = 75% chance of acceptable match
Choosing a bank (specifically a private bank) for her daughter’s cord blood made perfect sense to Julie Lehrman, a mom based in Chicago. “We wanted the extra assurance that we were doing everything we could to keep Lexi healthy,” Lehrman says. “I was older when Lexi was born, and there’s a lot we didn’t know about my mom’s health history, so we felt that we were making a smart decision.” Fortunately, Lexi was born healthy, and neither she nor anyone else in the family has needed the cord blood since it was stored seven years ago. But Lehrman has no regrets; she still feels the family made a wise investment. “Lexi or her brother or even one of us could still need that blood in the future, so I’m thankful that we have it.” But banking your child’s cord blood may not be the right decision for you. Read on to see if you should opt for private cord blood banking.
To prevent graft-versus-host disease and help ensure engraftment, the stem cells being transfused need to match the cells of the patient completely or to a certain degree (depending on what is being treated). Cord blood taken from a baby’s umbilical cord is always a perfect match for the baby. In addition, immediate family members are more likely to also be a match for the banked cord blood. Siblings have a 25 percent chance of being a perfect match and a 50 percent chance of being a partial match. Parents, who each provide half the markers used in matching, have a 100% chance of being a partial match. Even aunts, uncles, grandparents and other extended family members have a higher probability of being a match and could possibly benefit from the banked cord blood. Read more reasons why you should bank cord blood.
The Celebration Stem Cell Centre (CSCC), offers both public donation and private “family banking” of umbilical cord blood.  All cord blood collections are processed according to the highest standards in the industry in a new, state-of-the art facility located in Gilbert, Arizona.  The public cord blood donation program is funded by the private “family banking” program and private philanthropy.
Like most transplants, the stem cells must be a genetic match with the patients to be accepted by the body’s immune system. It goes without saying that a patient’s own cord blood will be a 100% match. The second highest chance of a genetic match comes from siblings.
We offer standard and premium cord blood processing options. Our standard service has been used in thousands of successful transplants since 1988 and begins at $1600. For $350 more, our premium service uses a superior new processing method that greatly enhances parents’ return on investment. (Please visit our processing technology page to learn about our cord blood processing methods.) For an additional $950, you can also store your baby’s cord tissue, which has the potential to help heal the body in different ways than cord blood.
^ a b Thornley, I; et al. (March 2009). “Private cord blood banking: experiences and views of pediatric hematopoietic cell transplantation physicians”. Pediatrics. 123 (3): 1011–7. doi:10.1542/peds.2008-0436. PMC 3120215 . PMID 19255033.
Lead image of baby’s umbilical cord from Wikimedia Commons. Possible human blood stem cell image by Rajeev Gupta and George Chennell. Remaining images of blood sample bags and red blood cells from Wellcome Images.
 If cord blood can be used for parents is the very common question that many adults have. And of course, the answer is Yes”. Actually, it’s very common reason for the parents to save and store their baby’s umbilical cord blood. And it’s not…
Cord blood donation doesn’t cost anything for parents. Public cord blood banks pay for everything which includes the collection, testing, and storing of umbilical cord blood. This means that cord blood donation is not possible in every hospital.
If you make a donation to a public cord blood bank, you can’t reserve it for your family, so it may not be available for your future use. Both the American Academy of Pediatrics (AAP) and American Medical Association (AMA) recommend public cord blood banking over private cord blood banking. Here’s why:
We are genetically closest to our siblings. That’s because we inherit half of our DNA from our mother and half from our father, so the genes we inherit are based on a chance combination of our parents’. Our siblings are the only other people inheriting the same DNA.
“Raising a family is expensive enough,” says Jeffrey Ecker, MD, director of obstetrical clinical research at Massachusetts General Hospital, in Boston, and a member of ACOG’s ethics committee. “There’s no reason for parents to take on this additional financial burden when there’s little chance of a child ever using his own cord blood.”
In terms of performance, our PrepaCyte-CB processing method has taken the lead. PrepaCyte-CB greatly improves on parents’ returns on investment because it yields the highest number of stem cells while showing the greatest reduction in red blood cells.1–4 Clinical transplant data show that cord blood processed with PrepaCyte-CB engrafts more quickly than other processing methods.7 This means patients may start feeling better more quickly, may spend less time in the hospital and are less likely to suffer from an infection. The ability to get better more quickly and a reduced chance of infection can prove vital in certain cases. Learn more about PrepaCyte®-CB here.
Banking your child’s cord blood really comes down your personal choice.  Some people may seem the potential benefits, while others can’t justify the costs.  No one debates cord blood cells being a lifesaver, and in recent years, more than 20,000 lives have been saved because of it; however, experts, such as The American Academy of Pediatrics, note that your odds of using this blood is about one in 200,000.  Instead of buying into a company’s advertising scheme, be sure to do your own research and deem what’s best for your child’s future.
Families have the additional option of storing a section of the umbilical cord, which is rich in unique and powerful stem cells that may help repair and heal the body in different ways than stem cells derived from cord blood.
In New Zealand, a hopeful couple are participating in a study that will use one of their son’s cord blood stem cells to research treatment for another son’s cystic fibrosis. In Chicago, people are using their sibling’s stem cells to successfully treat sickle cell disease. And countless other families have banked their second child’s cord blood after their first child was diagnosed with leukemia. Many of those children are alive and well today thanks to their sibling’s stem cells. Since the first successful cord blood stem cell transplant on a sibling in 1988, over 30,000 cord blood transplants have been performed worldwide.
Cord blood banking is not always cheap. It’s completely free to donate blood to a public cord blood bank, but private banks charge $1,400 to $2,300 for collecting, testing, and registering, plus an annual $95 to $125 storing fee.
The therapeutic potential of stem cells from the umbilical cord is vast. Cord blood is already being used in the treatment of nearly 80 life-threatening diseases2, and researchers continue to explore it’s potential. Duke University Medical Center is currently using cord blood stem cells in a Phase II clinical trial to see if it benefits kids with Autism. The number of clinical trials using cord tissue stem cells in human patients has increased to approximately 150 since the first clinical trial in 2007. Cord tissue stem cells are also being studied for the potential use in kids with Autism – a Phase I Clinical Trial is underway.
As the research into umbilical cord blood and it’s therapeutic use for blood diseases has grown, so has the question as to whether people should privately store the cord blood of their offspring for future use. A recent paper on this issue by Mahendra Rao and colleagues advocates the practice of cord blood banking (for treatment of blood diseases) but in the context of public cord blood banks rather than a private cord blood banks. Any adult needing treated would need at least two cord blood samples that are immune compatible. So one sample will not be sufficient. A child might only need one cord blood sample but in the case of childhood leukaemia there is a risk that pre-leukemic cells are present in cord blood sample – and so the child could not use their own cells for therapy.
Are public banks and family banks the same, except for who may use the cord blood and the cost to the parents? No. Public banks are subject to much higher regulatory requirements, and compliance with regulations carries costs. At a family bank you pay the bank enough to cover the cost of storing your baby’s cord blood, plus they make a profit. When you donate to a public bank, it costs you nothing, but the bank pays more on processing each blood collection than at a family bank. Let’s look at the steps that take place in the laboratory.
The University of Texas Health Science Center at Houston is conducting a pioneering FDA-regulated phase I/II clinical trial to compare the safety and effectiveness of two forms of stem cell therapy in children diagnosed with cerebral palsy. The randomized, double-blinded, placebo-controlled study aims to compare the safety and efficacy of an intravenous infusion of autologous cord blood stem cells to bone marrow stem cells.
According to Cord Blood Registry, cord blood is defined as “the blood that remains in your baby’s umbilical cord after the cord has been cut, is a rich source of unique stem cells that can be used in medical treatments.”  Cord blood has been shown to help treat over 80 diseases, such as leukemia, other cancers, and blood disorders.  This cord blood, which can be safely removed from your newborn’s already-cut umbilical cord, can be privately stored for the purpose of possible use in the future for your child or family member.  (It can also be donated to a public bank, but this is not widely available)
Are there situations where private cord blood banking might make sense? Some parents choose to bank their child’s blood if they don’t know his or her medical background — for instance, if a parent was adopted or the child was conceived with a sperm or egg donor.
http://markets.kelownadailycourier.ca/kelownadailycourier/news/read/36631633
http://www.wmcactionnews5.com/story/38663417/cord-blood-banking-stem-cell-research-pros-cons-review-launched

http://www.hawaiinewsnow.com/story/38663417/cord-blood-banking-stem-cell-research-pros-cons-review-launched

http://www.wandtv.com/story/38663417/cord-blood-banking-stem-cell-research-pros-cons-review-launched

http://www.nbc12.com/story/38663417/cord-blood-banking-stem-cell-research-pros-cons-review-launched

https://www.youtube.com/channel/UCspc5xs7rmywaELYKBqCOAg
Donating cord blood to a public cord blood bank involves talking with your doctor or midwife about your decision to donate and then calling a cord blood bank (if donation can be done at your hospital). Upon arriving at the hospital, tell the labor and delivery nurse that you are donating umbilical cord blood.
Tissue typed and listed on the registry of the C.W. Bill Young Cell Transplantation Program, also called the Be The Match Registry®. (The registry is a listing of potential marrow donors and donated cord blood units. When a patient needs a transplant, the registry is searched to find a matching marrow donor or cord blood unit.)
The materials and information included in this electronic newsletter (Newsletter), including advertisements, are provided as a service to you and do not reflect endorsement by the Parent’s Guide to Cord Blood Foundation (the “Foundation”). The Foundation is not responsible for the accuracy and completeness of information provided by guest authors, outside sources, or on websites linked to the Newsletter. The Foundation reserves the right at any time to remove materials and information from the Newsletter without communication with the author or organization. Access to and use of all Newsletter information is at the user’s own risk. The Foundation is not liable for any damages of any kind, nature or description (whether direct, consequential or punitive) arising out of or relating to information referenced in the Newsletter, or related in any way to the user’s access to the Newsletter. The Foundation’s Terms of Use is expressly incorporated herein. Questions can be directed to info@parentsguidecordblood.org.
When a child develops a condition that can be treated with stem cells, they undergo transplant. A doctor infuses stem cells from cord blood or bone marrow into the patient’s bloodstream, where they will turn into cells that fight the disease and repair damaged cells—essentially, they replace and rejuvenate the existing immune system.
Is the blood stored as a single unit or in several samples? Freezing in portions is preferred so the blood can be tested for potential transplant use without thawing — and wasting — the entire sample.
We have 12- and 24-month in-house payment plans to spread the initial cost out over time. They require no credit check and begin with little money down. Starting at approximately $2.50 a day, you can help safeguard your baby’s future. After the term of the payment plan, you are then only responsible for the annual storage fee, which begins at $150.
Graft-versus-host disease (GVHD) is a common complication after an allogeneic transplant (from a source other than the patient) where the patient’s immune system recognizes the cells as “foreign” and attacks the newly transplanted cells.  This can be a potentially life threatening complication.  The risk for developing GVHD is lower with cord blood transplants than with marrow or peripheral blood transplants.  Patients who do develop GVHD after a cord blood transplant typically do not develop as severe of a case of GVHD.   Cord blood also is less likely to transmit certain viruses such as cytomegalovirus (CMV), which poses serious risks for transplant patients with compromised immune systems.

Leave a Reply

Your email address will not be published. Required fields are marked *