cord blood america | buffey cord blood

Since most banks require mothers to sign up for donation between the 28th and 34th week of pregnancy, families must decide to donate ahead of time. If you are considering a public bank for your child’s cord blood, contact the bank and make sure you still have time.
One part of the Program, the Cord Blood Coordinating Center, has a network of cord blood banks, including some banks that get Federal support to build the NCBI. The Cord Blood Coordinating Center works with its network of cord blood banks to recruit expectant parents for umbilical cord blood donations and to distribute cord blood units listed on the registry of the C.W. Bill Young Cell Transplantation Program, also called the Be The Match Registry®. The registry is a listing of potential marrow donors and donated cord blood units.
The cord is cut and clamped, just like normal. The mother doesn’t go through anything different during birth, and neither does her child. They will experience no additional pain or procedures before, during, or after birth.
Gift of Life is a non-profit charity that seeks to help Jewish patients find a transplant match.  They recruit both bone marrow donors and cord blood donations from the Jewish community.  Gift of Life operates their own accredited cord blood laboratory that participates in the national NMDP network.
To learn more about umbilical cord blood and banking please watch Banking on cord blood, Cord blood – banking and uses, Cord blood transplantation – how stem cells can assist in the treatment of cancer in our video library.
As cord blood is inter-related to cord blood banking, it is often a catch-all term used for the various cells that are stored. It may be surprising for some parents to learn that stored cord blood contains little of what people think of as “blood,” as the red blood cells (RBCs) can actually be detrimental to a cord blood treatment. (As we’ll discuss later, one of the chief goals of cord blood processing is to greatly reduce the volume of red blood cells in any cord blood collection.)
Cord blood does not have to be as closely matched as bone marrow or peripheral blood transplants. Bone marrow transplants typically require a 6/6 HLA match.  While a closely matched cord blood transplant is preferable, cord blood has been transplanted successfully with as few as 3/6 matches.  For patients with uncommon tissue types, cord blood may be an option if a suitable adult donor cannot be found.  Since cord blood is cryogenically preserved and stored, it is more readily available than bone marrow or peripheral blood from an unrelated donor, allowing transplants to take place within a shorter period of time.  It takes approximately two weeks to locate, transfer, and thaw a preserved cord blood unit.  Finding a suitable bone marrow donor typically takes at least two months.
But considering the average cost of a new car or top-of-the-line stroller these days, many expectant parents feel it’s not an unreasonable price to pay to give their child the best chance in life. “Ultimately, my conscience wouldn’t let me not do it,” says Merilee Kern, of San Diego. “We could afford it, and the blood could someday save my daughter.”
Certainly, there are plenty of doctors who have high hopes for stem-cell advances and advise patients to consider cord-blood banking. When private banks first started sending him informational packets, Jordan Perlow, MD, a maternal-fetal specialist in Phoenix, assumed they were just trying to profit from parents’ anxieties. But after attending medical conferences and scrutinizing studies about developments in stem-cell therapies, Dr. Perlow now encourages his patients to privately bank if they can afford it because he’s convinced that it might save their child’s life or the life of another family member. “If private banking had been available when my children were born, I would have done it,” he says.
Georgia Regents University is conducting an FDA-regulated phase I/II clinical trial to assess whether an infusion of autologous stem cells derived from their own cord blood can improve the quality of life for children with cerebral palsy.
To explain why cord blood banking is so expensive in the United States, we wrote an article with the CEO of a public cord blood bank that lists the steps in cord blood banking and itemizes the cost of each one.
MSCs are reported to have immune-suppressive effects. To comment human fetal and adult MSCs are not inherently immunostimulatory in vitro and fail to induce proliferation of allogeneic lymphocytes (37–39; for review, see ref. 40). In one human case, fully mismatched allogeneic fetal liver-derived MSCs were transplanted into an immunocompetent fetus with osteogenesis imperfecta in the third trimester of gestation (41). No immunoreactivity was observed when patient lymphocytes were re-exposed to the graft in vitro, indicating that MSCs can be tolerated when transplanted across MHC barriers in humans. Similarly, after intrauterine transplantation of human MSCs into sheep, the cells persisted long-term and differentiated along multiple mesenchymal lineages (42). Instead, the cells are immunosuppressive and reduce lymphocyte proliferation and the formation of cytotoxic T-cells and natural killer cells when present in mixed lymphocyte cultures. The mechanism whereby MSCs suppress lymphocyte proliferation is still largely unknown but appears to, at least in part, be mediated by a soluble factor. Several factors, including MSC-produced prostaglandin E2, indoleamine 2,3-dioxygenase-mediated tryptophan depletion, transforming growth factor-β1, and hepatocyte growth factor have been proposed to mediate the suppression, but the data remain controversial.
In the event your child becomes seriously ill, develops a genetic disorder, illness affecting the immune system or blood-related disease, we ask that you notify the cord blood bank as this could impact the patient receiving your cord blood donation. Contact us​ for information »

Generally speaking, public cord blood banks collect, process and store your donated cord blood for free. The cord blood you donate to a public bank may be used for transplants or for research purposes, so you may not be able to access your own cord blood. View a list of public cord blood banks in North America.
The Medical Letter On Drugs and Therapeutics also recently addressed aspects of public and private cord blood banks, asking the question: “Does Private Banking Make Sense?” After citing various statistics on the actual uses of privately stored cord blood, they concluded that: “At the present time, private storage of umbilical cord blood is unlikely to be worthwhile. Parents should be encouraged to contribute, when they can, to public cord blood banks instead.” [Access The Medical Letter at www.medicalletter.org].
We offer standard and premium cord blood processing options. The former has been used in thousands of successful transplants since 1988, and the latter is a superior new processing method that greatly enhances parents’ return on investment. Please visit our processing technology page to learn about our cord blood processing methods.
The procedure for obtaining the cord blood involves clamping the umbilical cord at the time of birth. The small amount of blood remaining in the umbilical cord is drained and taken to a cord blood bank. It is free to donate.
As shown in Table 1, at least five different laboratories have extracted MSC-like cells from umbilical cord tissues. Some differences in the ease with which MSC-like cells are isolated from the various tissues are reported. Importantly, the methods for isolating MSC-like cells are robust, i.e., labs throughout the world independently isolate MSC-like cells from these tissues. This opens the door for independent verification, scalable production, and a large-team approach.
As noted, there are different ways to process cord blood, and although the type of processing method doesn’t always enter the conversation on cord blood banking, it is a big part of the purity of any cord blood collection. Red blood cells can have a negative impact on a cord blood transfusion. In addition, there is a certain number of stem cells that need to be present in order for the cord blood to be effective in disease treatment. Each processing method has the ability to better reduce the number of RBCs and capture more stem cells. Some processing methods like AutoXpress and Sepax are automated to ensure a level of consistency across all collections. HES is preferred by some banks because it was the original processing method used by most banks and it has a proven track record. You can read more about the different cord blood processing methods here.
We have 12- and 24-month in-house payment plans to spread the initial cost out over time. They require no credit check and begin with little money down. Starting at approximately $2.50 a day, you can help safeguard your baby’s future. After the term of the payment plan, you are then only responsible for the annual storage fee, which begins at approximately $12 a month depending on which services you have chosen.
The Celebration Stem Cell Centre (CSCC), offers both public donation and private “family banking” of umbilical cord blood.  All cord blood collections are processed according to the highest standards in the industry in a new, state-of-the art facility located in Gilbert, Arizona.  The public cord blood donation program is funded by the private “family banking” program and private philanthropy.
However, cord blood transplants also have limitations. Treatment of adults with cord blood typically requires two units of cord blood to treat one adult. Clinical trials using “double cord blood transplantation” for adults have demonstrated outcomes similar to use of other sources of HSCs, such as bone marrow or mobilized peripheral blood. Current studies are being done to expand a single cord blood unit for use in adults. Cord blood can also only be used to treat blood diseases. No therapies for non-blood-related diseases have yet been developed using HSCs from either cord blood or adult bone marrow.
Cord blood, which is harvested from the umbilical cord right after a baby is born, is marketed as a treatment for diseases such as leukemia and sickle cell disease, and as a potential source of cells for regenerative medicine – a cutting-edge field of medicine studying how to repair tissues damaged by everything from heart disease to cerebral palsy.
You must complete the medical health questionnaire regarding your pregnancy and the medical history of your family, preferably before your deliver. This form asks for information about your health, your pregnancy, and the medical history of your family. These questions are similar to the questions asked of volunteer blood donors, and some are of a personal nature. This information will be kept strictly confidential. Get a medical history questionnaire prior to delivery.
First, the cells are checked to see if they can be used for a transplant. If there are too few cells, the cord blood unit may be used for research to improve the transplant process for future patients or to investigate new therapies using cord blood, or discarded.
In March 2004, the European Union Group on Ethics (EGE) has issued Opinion No.19[16] titled Ethical Aspects of Umbilical Cord Blood Banking. The EGE concluded that “[t]he legitimacy of commercial cord blood banks for autologous use should be questioned as they sell a service, which has presently, no real use regarding therapeutic options. Thus they promise more than they can deliver. The activities of such banks raise serious ethical criticisms.”[16]
^ a b c American Academy of Pediatrics Section on Hematology/Oncology; American Academy of Pediatrics Section on Allergy/Immunology; Lubin, BH; Shearer, WT (January 2007). “Cord blood banking for potential future transplantation”. Pediatrics. 119 (1): 165–70. doi:10.1542/peds.2006-2901. PMID 17200285.
MSC-like cells derived from Wharton’s jelly adjacent to umbilical vessels (termed human umbilical cord perivascular cells) cultured in nonosteogenic media nevertheless contained a subpopulation that demonstrated a functional osteogenic phenotype with the elaboration of bone nodules (29); addition of osteogenic supplements further enhanced this population. These findings suggest that cord matrix stem cells, like bmMSCs, are multipotent: capable of making ectoderm- and mesoderm-derived cells.
Cord blood is currently approved by the FDA for the treatment for nearly 80 diseases, and cord blood treatments have been performed more than 35,000 times around the globe to treat cancers (including lymphoma and leukemia), anemias, inherited metabolic disorders and some solid tumors and orthopedic repair. Researchers are also exploring how cord blood has the ability to cross the blood–brain barrier and differentiate into neurons and other brain cells, which may be instrumental in treating conditions that have been untreatable up to this point. The most exciting of these are autism, cerebral palsy and Alzheimer’s.
We believe that every family should have the opportunity to preserve their baby’s newborn stem cells. That’s why CBR offers transparent costs of cord blood banking, and various payment options to fit this important step into almost every family budget.
Our processing fees include the first year of storage. After the first year, you can continue to pay for the storage annually or pre-pay for storage at a significantly discounted price. Our annual storage fees are fixed for the life of your contract.
They aren’t the only ones questioning the business practices of private cord-blood banks. Both the American College of Obstetricians and Gynecologists (ACOG) and the American Academy of Pediatrics (AAP) issued statements in the late 1990s opposing the use of for-profit banks — and criticizing their marketing tactics. Instead, they recommended that parents donate cord blood to public banks, which make it available for free to anyone who needs it. Globally, other organizations have done the same. Italy and France have banned private cord-blood banking altogether.
Upon arrival at CBR’s laboratory, the kit is immediately checked in and inspected. Next, the cord blood unit is tested for sterility, viability, and cell count. In addition, the cord tissue is tested for sterility. CBR processes cord blood using the AutoXpress® Platform* (AXP®) – a fully automated, functionally closed stem cell processing technology. The AXP platform is an integral component of CBR’s proprietary CellAdvantage® system. CBR has the industry’s highest published average cell recovery rate of 99%.
Umbilical cords have traditionally been viewed as disposable biological by-product.  Cord blood, however, is rich in multi-potent hematopoietic stem cells (HSCs).  Recent medical advances have indicated that these stem cells found in cord blood can be used to treat the same disorders as the hematopoietic stem cells found in bone marrow and in the bloodstream but without some of the disadvantages of these types of transplants.  Cord blood is currently used to treat approximately 70 diseases including leukemias, lymphomas, anemias, and Severe Combined Immunodeficiency (SCID). Six thousand patients worldwide have been treated with cord blood stem cell transplants, although the FDA considers the procedure to be experimental.  These multipotent stem cells also show promise for the treatment of a variety of diseases and disorders other than those affecting the blood. 
‡ Payment Plan Disclosures for in-house CBR 6-Month Plan (interest free) – No credit check required. The 6-month plan requires a $10/month administrative fee. The plans may be prepaid in full at any time.
Cord blood is the blood from the baby that is left in the umbilical cord and placenta after birth. It contains special cells called hematopoietic stem cells that can be used to treat some types of diseases.
The use of cord blood is determined by the treating physician and is influenced by many factors, including the patient’s medical condition, the characteristics of the sample, and whether the cord blood should come from the patient or an appropriately matched donor. Cord blood has established uses in transplant medicine; however, its use in regenerative medicine is still being researched. There is no guarantee that treatments being studied in the laboratory, clinical trials, or other experimental treatments will be available in the future.
After a look at the many reasons to bank including the various diseases cord blood can treat, most parents would love to preserve their baby’s cord blood and cord tissue. We are the premier cord blood banking provider and offer an exceptional level of quality while giving parents the best price possible, with no unexpected fees or hidden surcharges. We offer a number of special discounts for returning clients, referring a friend, multiple births and medical professionals in addition to in-house financing options to keep the cost of cord blood banking in everyone’s reach. We are committed not only to offering the best quality service but also to meeting the price of any reputable competitor through our best-price guarantee.
Carolinas Cord Blood Bank at Duke (CCBB) is headed by Dr. Joanne Kurtzberg. Expectant parents who have a child in need of therapy with cord blood, especially the new therapies in clinical trials at Duke, may be eligible for directed donation through CCBB.
There was a time before the 1990s when the umbilical cord and its blood were considered medical waste. Today, parents bank or store their baby’s umbilical cord blood because the stem cells it contains are currently utilized or show promise in the treatment of life-threatening and debilitating diseases.
Editor’s Note: This article originally appeared in the Volume 16, Number 1, Spring 2009 issue of Dignitas, the Center’s quarterly publication. Subscriptions to Dignitas are available to CBHD Members. To learn more about the benefits of becoming a member click here.
Some parents-to-be are sold on the advertising that banking their child’s cord blood could potentially treat an array of diseases the child, or his siblings, could encounter in their lives. Other parents-to-be may find all the promises too good to be true.
It’s now possible to preserve up to twice the number of stem cells – exclusively available through cord blood banking with Americord®. With Cord Blood 2.0™, you now have the opportunity to treat your child into adolescence and even adulthood. Learn more >
Stem cells can be used in treatments for many different types of diseases. One of the main places young stem cells are found is in cord blood, which can be stored at birth and saved for future use if needed. Stem cells are also found in other places in the human body, including blood and bone marrow.
^ Caseiro, AR; Pereira, T; Ivanova, G; Luís, AL; Maurício, AC (2016). “Neuromuscular Regeneration: Perspective on the Application of Mesenchymal Stem Cells and Their Secretion Products”. Stem Cells International. 2016: 9756973. doi:10.1155/2016/9756973. PMC 4736584 . PMID 26880998.
Unlike other banks, CBR uses a seamless cryobag for storage. The seamless construction decreases the potential for breakage that can occur in traditional, seamed-plastic storage bags. Prior to storage, each cryobag is placed in a second overwrap layer of plastic, which is hermetically sealed as an extra precaution against possible cross contamination by current and yet unidentified pathogens that may be discovered in the future. CBR stores the stem cells in vaults, called dewars, specially designed for long-term cryostorage. The cord blood units are suspended above a pool of liquid nitrogen that creates a vapor-phase environment kept at minus 196 degrees Celsius. This keeps the units as cold as liquid nitrogen without immersing them in liquid, which can enable cross-contamination. Cryopreserved cord blood stem cells have proven viable after more than 20 years of storage, and research suggests they should remain viable indefinitely.
CORD:USE is directed by leading doctors in cord blood transplantation.  Public donations collected by CORD:USE are sent to the Carolinas Cord Blood Bank, a FACT-accredited laboratory under the direction of Dr. Joanne Kurtzberg.
Similar to transplantation, the main disadvantage is the limited number of cells that can be procured from a single umbilical cord.  Different ways of growing and multiplying HSCs in culture are currently being investigated.  Once this barrier is overcome, HSCs could be used to create “universal donor” stem cells as well as specific types of red or white blood cells.  Immunologic rejection is a possibility, as with any stem cell transplant.  HSCs that are genetically modified are susceptible to cancerous formation and may not migrate (home) to the appropriate tissue and actively divide.  The longevity of cord blood HSCs is also unknown.
Once you arrive at the hospital, all you need to worry about is having a safe birth. There are a few minor things that you and your family must remember at the hospital, but your priority should be birth and spending time with your newborn.
There are so many things to think about when you have a child. One of them is the blood from your baby’s umbilical cord (which connects the baby to the mother while in the womb). It used to be thrown away at birth, but now, many parents store the blood for the future health of their child. Should you do it?
Another way scientists are working with stem cells is through expansion technologies that spur replication of the cord blood stem cells. If proven effective and approved by the U.S. Food and Drug Administration, these expansion technologies will allow scientists to culture many stem cells from a small sample. This could provide doctors and researchers with enough stem cells to treat multiple family members with one cord blood collection or provide the baby with multiple treatments over time. To better prepare for the day when these expansion technologies are more easily accessible, some cord blood banks have begun to separate their cord blood collections into separate compartments, which can easily be detached from the rest of the collection and used independently. You can learn more about Cryo-Cell’s five-chambered storage bag here.
Women thinking about donating their child’s cord blood to a public bank must pass certain eligibility requirements. While these vary from bank to bank, the following list shows general health guidelines for mothers wanting to donate.
Make sure you meet a few basic guidelines for public banking. Your doctor will give you an advanced blood test after giving birth, but there are a few basic requirements you have to meet before signing up. The requirements are different for each bank, but you can see our basic list of public banking requirements here.
Since 1988, cord blood transplants have been used to treat over 80 diseases in hospitals around the world. Inherited blood disorders such as sickle cell disease and thalassemia can be cured by cord blood transplant. Over the past decade, clinical trials have been developing cord blood therapies for conditions that affect brain development in early childhood, such as cerebral palsy and autism.
Donating cord blood to a public bank adds to the supply and can potentially help others. Donating to a public bank is especially important for ethnic minorities, who are not well represented in cord blood banks. Public cord blood donation increases the chance of all groups finding a match.
Marketing materials by Viacord and Cord Blood Registry, the two largest companies, do not mention that cord blood stem cells cannot be used by the child for genetic diseases, although the fine print does state that cord blood may not be effective for all of the listed conditions.